Hall-Littlewood polynomials and fixed point enumeration
نویسنده
چکیده
We resolve affirmatively some conjectures of Reiner, Stanton, and White [12] regarding enumeration of various classes of matrices which are invariant under certain cyclic row and column rotations. Our results are phrased in terms of the bicyclic sieving phenomenon introduced by Barcelo, Reiner, and Stanton [1]. The proofs of our results use various tools from symmetric function theory such as the Stanton-White rim hook correspondence [18] and results concerning the specialization of Hall-Littlewood polynomials due to Lascoux, Leclerc, and Thibon [5] [6].
منابع مشابه
J ul 2 00 8 COMBINATORIAL HOPF ALGEBRAS , NONCOMMUTATIVE HALL - LITTLEWOOD FUNCTIONS , AND PERMUTATION TABLEAUX
We introduce a new family of noncommutative analogues of the HallLittlewood symmetric functions. Our construction relies upon Tevlin’s bases and simple q-deformations of the classical combinatorial Hopf algebras. We connect our new Hall-Littlewood functions to permutation tableaux, and also give an exact formula for the q-enumeration of permutation tableaux of a fixed shape. This gives an expli...
متن کاملCombinatorial Hopf Algebras, Noncommutative Hall-littlewood Functions, and Permutation Tableaux
We introduce a new family of noncommutative analogs of the HallLittlewood symmetric functions. Our construction relies upon Tevlin’s bases and simple q-deformations of the classical combinatorial Hopf algebras. We connect our new Hall-Littlewood functions to permutation tableaux, and also give an exact formula for the q-enumeration of permutation tableaux of a fixed shape. This gives an explici...
متن کاملA pr 2 00 8 COMBINATORIAL HOPF ALGEBRAS , NONCOMMUTATIVE HALL - LITTLEWOOD FUNCTIONS , AND PERMUTATION TABLEAUX
We introduce a new family of noncommutative analogs of the HallLittlewood symmetric functions. Our construction relies upon Tevlin’s bases and simple q-deformations of the classical combinatorial Hopf algebras. We connect our new Hall-Littlewood functions to permutation tableaux, and also give an exact formula for the q-enumeration of permutation tableaux of a fixed shape. This gives an explici...
متن کاملar X iv : 0 80 4 . 09 95 v 3 [ m at h . C O ] 3 J un 2 00 9 COMBINATORIAL HOPF ALGEBRAS , NONCOMMUTATIVE HALL - LITTLEWOOD FUNCTIONS , AND PERMUTATION TABLEAUX
We introduce a new family of noncommutative analogues of the HallLittlewood symmetric functions. Our construction relies upon Tevlin’s bases and simple q-deformations of the classical combinatorial Hopf algebras. We connect our new Hall-Littlewood functions to permutation tableaux, and also give an exact formula for the q-enumeration of permutation tableaux of a fixed shape. This gives an expli...
متن کاملConnections Between a Family of Recursive Polynomials and Parking Function Theory
In a 2010 paper Haglund, Morse, and Zabrocki studied the family of polynomials ∇Cp1 . . . Cpk1 , where p = (p1, . . . , pk) is a composition, ∇ is the Bergeron-Garsia Macdonald operator and the Ca are certain slightly modified Hall-Littlewood vertex operators. They conjecture that these polynomials enumerate a composition indexed family of parking functions by area, dinv and an appropriate quas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 310 شماره
صفحات -
تاریخ انتشار 2010